Two population STDP network model

Network model

In this example, we employ a simple network model describing the dynamics of a local cortical circuit at the spatial scale of ~1mm within a single cortical layer. It is derived from the model proposed in [1], but accounts for the synaptic weight dynamics for connections between excitatory neurons. The weight dynamics are described by the spike-timing-dependent plasticity (STDP) model derived in [2]. This network model is used as the basis for scaling experiments comparing the model ignore-and-fire with the iaf_psc_alpha. You can find

Summary of network model

Populations

excitatory population \(\mathcal{E}\), inhibitory population \(\mathcal{I}\), external Poissonian spike sources \(\mathcal{X}\)

Connectivity

sparse random connectivity respecting Dale’s principle

Neurons

leaky integrate-and-fire (LIF)

Synapses

linear input integration with alpha-function-shaped postsynaptic currents (PSCs), spike-timing dependent plasticity (STDP) for connections between excitatory neurons

Input

stationary, uncorrelated Poissonian spike trains

../../_images/NetworkSketch_TwoPopulationNetworkPlastic.svg

Figure 48 Network sketch (see Fig. 8 in Senk et al. [3]).

Detailed desciption of network model

Populations

Name

Elements

Size

\(\mathcal{E}\)

LIF neurons

\(N_\text{E}=\beta{}N\)

\(\mathcal{I}\)

LIF neurons

\(N_\text{I}=N-N_\text{E}\)

\(\mathcal{X}\)

realizations of a Poisson point process

\(N\)

Connectivity

Source

Target

Pattern

\(\mathcal{E}\)

\(\mathcal{E}\)

  • random, independent; homogeneous in-degree \(K_{\text{E},i}=K_\text{E}\)

    (\(\forall{}i\in\mathcal{E}\))

  • plastic synaptic weights \(J_{ij}(t)\)

    (\(\forall{}i\in\mathcal{E},j\in\mathcal{E}\))

  • homogeneous

    spike-transmission delays \(d_{ij}=d\)

    (\(\forall{}i\in\mathcal{E},j\in\mathcal{E}\))

\(\mathcal{E}\)

\(\mathcal{I}\)

  • random, independent; homogeneous in-degree \(K_{\text{E},i}=K_\text{E}\)

    (\(\forall{}i\in\mathcal{I}\))

  • fixed synaptic weights \(J_{ij}\in\{0,J\}\)

    (\(\forall{}i\in\mathcal{I},j\in\mathcal{E}\))

  • homogeneous

    spike-transmission delays \(d_{ij}=d\)

    (\(\forall{}i\in\mathcal{I},j\in\mathcal{E}\))

\(\mathcal{I}\)

\(\mathcal \ {E}\cup\mathcal{I}\)

  • random, independent; homogeneous in-degree \(K_{\text{I},i}=K_\text{I}\)

    (\(forall{}i\in\mathcal{E}\cup\mathcal{I}\))jinmathcal{I}`)

  • fixed synaptic weights \(J_{ij}\in\{-gJ,0\}\)

    (\(\forall{}i\in\mathcal{E}\cup\mathcal{I}, \ j\in\mathcal{I}\))

  • homogeneous

    spike-transmission delays \(d_{ij}=d\)

    (\(\forall{}i\in\mathcal{E}\cup\mathcal{I}, \ j\in\mathcal{I}\))

\(\mathcal{X}\)

\(\mathcal \ {E}\cup\mathcal{I}\)

  • one-to-one

  • fixed synaptic weights \(J_{ij}=J\)

    (\(\forall{}i\in\mathcal{E}\cup\mathcal{I}, \ j\in\mathcal{X}\))

  • homogeneous

    spike-transmission delays \(d_{ij}=d\)

    (\(\forall{}i\in\mathcal{E}\cup\mathcal{I}, \ j\in\mathcal{X}\))

Neuron

Leaky integrate-and-fire (iaf) dynamics

Dynamics of membrane potential \(V_{i}(t)\) and spiking activity \(s_i(t)\) of neuro \(i\in\left\{1,\ldots,N\right\}\):

  • emission of \(k\)th (\(k=1,2,\ldots\)) spike of neuron \(i\) at time \(t_{i}^{k}\) if

    \[V_{i}\left(t_{i}^{k}\right)\geq\theta\]

    with spike threshold \(\theta\)

  • reset and refractoriness:

    \[\forall{}k,\ \forall t \in \left(t_{k}^{i},\,t_{k}^{i}+\tau_\text{ref}\right]:\quad V_{i}(t)=V_\text{reset}\]

    with refractory period \(\tau_\text{ref}\) and reset potential \(V_\text{reset}\)

  • spike train \(\displaystyle s_i(t)=\sum_k \delta(t-t_i^k)\)

  • subthreshold dynamics of membrane potential \(V_{i}(t)\):

    \[\begin{split}\begin{aligned} &\forall{}k,\ \forall t \notin \left[t_{i}^{k},\,t_{i}^{k}+\tau_\text{ref}\right):\\ &\qquad\tau_\text{m}\frac{\text{d}{}V_i(t)}{\text{d}{}t} = \Bigl[E_\text{L}-V_i(t)\Bigr]+R_\text{m}I_i(t) \end{aligned}\end{split}\]

    with membrane time constant \(\tau_\text{m}\), membrane resistance \(R_\text{m}\), resting potential \(E_\text{L}\), and total synaptic input current \(I_i(t)\)

Synapse: transmission

Current-based synapses with alpha-function shaped postsynaptic currents (PSCs)

Total synaptic input current of neuron \(i\)

\[I_i(t)=I_{\text{E},i}(t)+I_{\text{I},i}(t)+I_{\text{X},i}(t)\]
  • excitatory, inhibitory and external synaptic input currents

    \[\begin{split}%I_{P,i}(t)=\sum_{j\in\mathcal{P}}(\text{PSC}_{ij}*s_j)(t) %\quad\text{for}\quad %(P,\mathcal{P})\in\{(\exc,\Epop),(\inh,\Ipop),(\ext,\Xpop)\} %, \begin{aligned} I_{\text{E},i}(t)&=\sum_{j\in\mathcal{E}}\bigl(\text{PSC}_{ij}*s_j\bigr)(t-d_{ij})\\ I_{\text{I},i}(t)&=\sum_{j\in\mathcal{I}}\bigl(\text{PSC}_{ij}*s_j\bigr)(t-d_{ij})\\ I_{\text{X},i}(t)&=\sum_{j\in\mathcal{X}}\bigl(\text{PSC}_{ij}*s_j\bigr)(t-d_{ij}) \end{aligned}\end{split}\]

    with spike trains \(s_j(t)\) of local (\(j\in\mathcal{E}\cup\mathcal{I}\)) and external sources (\(j\in\mathcal{X}\)), spike transmission delays \(d_{ij}\), and convolution operator “\(*\)”: \(\displaystyle\bigl(f*g\bigr)(t)=\int_{-\infty}^\infty\text{d}s\,f(s)g(t-s)\))

  • alpha-function shaped postsynaptic currents

    \[\text{PSC}_{ij}(t)=\hat{I}_{ij}e\tau_\text{s}^{-1}te^{-t/\tau_\text{s}}\Theta(t)\]

    with synaptic time constant \(\tau_\text{s}\) and Heaviside function \(\Theta(\cdot)\)

  • postsynaptic potential triggered by a single presynaptic spike

    \[\text{PSP}_{ij}(t)= \hat{I}_{ij}\frac{e}{\tau_\text{s}C_\text{m}} \left(\frac{1}{\tau_\text{m}}-\frac{1}{\tau_\text{s}}\right)^{-2} \left(\left(\frac{1}{\tau_\text{m}}-\frac{1}{\tau_\text{s}}\right) t e^{-t/\tau_\text{s}} - e^{-t/\tau_\text{s}} + e^{-t/\tau_\text{m}} \right) \Theta(t)\]
  • PSC amplitude (synaptic weight)

    \[\hat{I}_{ij}=\text{max}_t\bigl(\text{PSC}_{ij}(t)\bigr) =\frac{J_{ij}}{J_\text{unit}(\tau_\text{m},\tau_\text{s},C_\text{m})}\]

    parameterized by PSP amplitude \(J_{ij}=\text{max}_t\bigl(\text{PSP}_{ij}(t)\bigr)\)

    with unit PSP amplitude (PSP amplitude for \(\hat{I}_{ij}=1\)):

    \[J_\text{unit}(\tau_\text{m},\tau_\text{s},C_\text{m}) = \frac{e}{C_\text{m}\left(1-\frac{\tau_\text{s}}{\tau_\text{m}}\right)}\left( \frac{e^{-t_\text{max}/\tau_\text{m}} - e^{-t_\text{max}/\tau_\text{s}}}{\frac{1}{\tau_\text{s}} - \frac{1}{\tau_\text{m}}} - t_\text{max}e^{-t_\text{max}/\tau_\text{s}} \right),\]

    time to PSP maximum

    \[t_\text{max} = \frac{1}{\frac{1}{\tau_\text{s}} - \frac{1}{\tau_\text{m}}}\left(-W_{-1}\left(\frac{-\tau_\text{s}e^{-\frac{\tau_\text{s}}{\tau_\text{m}}}}{\tau_\text{m}}\right) - \frac{\tau_\text{s}}{\tau_\text{m}}\right),\]

    and Lambert-W function \(\displaystyle W_{-1}(x)\) for \(\displaystyle x \ge -1/e\)

Synapse: plasticity

Spike-timing dependent plasticity (STDP) with power-law weight dependence and all-to-all spike pairing scheme. See Morrison et al. [2] for connections between excitatory neurons.

Dynamics of synaptic weights \(J_{ij}(t)\) \(\forall{}i\in\mathcal{E}, j\in\mathcal{E}\):

\[\begin{split}\begin{aligned} &\forall J_{ij}\ge{}0: \\[1ex] &\quad \frac{\text{d}}{}J_{ij}{\text{d}{}t}= \lambda^+f^+(J_{ij})\sum_k x^+_j(t)\delta\Bigl(t-[t_i^k+d_{ij}]\Bigr) + \lambda^-f^-(J_{ij})\sum_l x^-_i(t)\delta\Big(t-[t_j^l-d_{ij}]\Bigr)\\[1ex] &\forall{}\{t|J_{ij}(t)<0\}: \quad J_{ij}(t)=0 \quad \text{(clipping)} \end{aligned}\end{split}\]

with

  • pre- and postsynaptic spike times \(\{t_j^l|l=1,2,\ldots\}\) and \(\{t_i^k|k=1,2,\ldots\}\),

  • magnitude \(\lambda^+=\lambda\) of weight update for causal firing (postsynaptic spike following presynaptic spikes: \(t_i^k>t_j^l\)),

  • magnitude \(\lambda^-=-\alpha\lambda\) of weight update for acausal firing (presynaptic spike following postsynaptic spikes: \(t_i^k<t_j^l\)),

  • power-law weight dependence \(f^+(J_{ij})=J_0(J_{ij}/J_0)^{\mu^+}\) of weight update for causal firing with exponent \(\mu^+\) and reference weight \(J_0\),

  • linear weight dependence \(f^-(J_{ij})=J_{ij}\) of weight update for acausal firing,

  • (dendritic) delay \(d_{ij}\),

  • spike trace \(x^+_j(t)\) of presynaptic neuron \(j\), evolving according to

    \[\frac{\text{d}{}x^+_j}{\text{d}{}t}=-\frac{x^+_j(t)}{\tau^+}+\sum_l\delta(t-t_j^l)\]

    with presynaptic spike times \(\{t_j^l|l=1,2,\ldots\}\) and time constant \(\tau^+\),

  • spike trace \(x^-_i(t)\) of postsynaptic neuron \(i\), evolving according to

    \[\frac{\text{d}{}x^-_i}{\text{d}{}t}=-\frac{x^-_i(t)}{\tau^-}+\sum_k\delta(t-t_i^k)\]

    with postsynaptic spike times \(\{t_i^k|k=1,2,\ldots\}\) and time constant \(\tau^-\)

Note

The above weight update accounts for all pairs of pre- and postsynaptic spikes (all-to-all spike pairing scheme). The spike histories and the dependence of the weight update on the time lag of pre- and postsynaptic firing are fully captured by the spike traces \(x^+_j(t)\) and \(x^-_i(t)\).

Stimulus

Type

Description

stationary, uncorrelated Poisson spike trains

\(N=|\mathcal{X}|\) independent realizations \(s_i(t)\) (\(i\in\mathcal{X}\)) of a Poisson point process with constant rate \(\nu_\text{X}(t)=\eta\nu_\theta\), where

\[ \begin{align}\begin{aligned}\label{eq:rheobase_rate_LIF_alpha}\\ \nu_\theta=\frac{\theta-E _\text{L}}{R_\text{m}{} \hat{I}_X{}e\tau_\text{s}}\end{aligned}\end{align} \]

denotes the rheobase rate, and \(\eta\) and \(\hat{I}_X=J/J_\text{unit}\) the relative rate and the synaptic weight (PSC amplitude) of external sources

Initial conditions

Type

Description

random initial membrane potentials, homogeneous initial synaptic weights and spike traces

  • membrane potentials: \(V_i(t=0)\sim \ \mathcal{U}(V_{0,\text{min}},V_{0,\text{max}})\) randomly and independently drawn from a uniform distribution between \(V_{0,\text{min}}\) and \(V_{0,\text{max}}\) (\(\forall{}i\))

  • synaptic weights: \(\hat{I}_{ij}(t=0)=J/J_\text{unit}\)

    (\(\forall{}i\in\mathcal{E}, \ j\in\mathcal{E}\))

  • spike traces: \(x_{+,i}(t=0)=x_{-,i}(t=0)=0\) (\(\forall{}i\in\mathcal{E}\))

Model parameters

Note

Parameters derived from other parameters are marked in \(\textcolor{blue}{blue}\).

Network and connectivity

Name

Value

Description

\(N\)

\(12500\)

total number of neurons in local network

\(\beta\)

\(0.8\)

relative number of excitatory neurons

\(\color{blue} N_\text{E}\)

\(\beta{}N=10000\)

total number of excitatory neurons

\(\color{blue} N_\text{I}\)

\(N-N_\text{E}=2500\)

total number of inhibitory neurons

\(K\)

\(1250\)

total number of inputs per neuron (in-degree) from local network

\(\color{blue} K_\text{E}\)

\(\beta{}K=1000\)

number of excitatory inputs per neuron (exc. in-degree) from local network

\(\color{blue} K_\text{I}\)

\(K-K_\text{E}=250\)

number of inhibitory inputs per neuron (inh. in-degree)

Neuron parameters

Name

Value

Description

\(\theta\)

\(20\,\text{mV}\)

spike threshold

\(E_\text{L}\)

\(0\,\text{mV}\)

resting potential

\(\tau_\text{m}\)

\(20\,\text{ms}\)

membrane time constant

\(C_\text{m}\)

\(250\,\text{pF}\)

membrane capacitance

\(\color{blue} R_\text{m}\)

\(\tau \ _\text{m}/C_\text{m}\ =80\,\text{M}\Omega\)

membrane resistance

\(V_\text{reset}\)

\(0\,\text{mV}\)

reset potential

\(\tau_\text{ref}\)

\(2\,\text{ms}\)

absolute refractory period

Synapse parameters

Name

Value

Description

\(J\)

\(0.5\,\,\text{mV}\)

(initial) weight (PSP amplitude) of excitatory synapses

\(g\)

\(10\)

relative strength of inhibitory synapses

\(\color{blue} J_\text{I}\)

\(-g {}J=-5\,\,\text{mV}\)

weight (PSP amplitude) of inhibitory synapses

\(\color{blue} J_\text{unit}\)

\(\approx{}\ 0.01567\,\,\text{mV} \ /\,\text{pA}\)

unit PSP amplitude

\(\color{blue} \ \hat{I}_\text{E}(0)\)

\(J/ \ J_\text{unit}\approx\ {}31.9\,\,\text{pA}\)

(initial) weight (PSC amplitude) of excitatory synapses

\(\color{blue} \hat{I}_\text{I}\)

\(-g{}J/ \ J_\text{unit}\approx\ {}-319\,\,\text{pA}\)

weight (PSC amplitude) of inhibitory synapses

\(\color{blue} \hat{I}_\text{X}\)

\(J/ \ J_\text{unit}\approx\ {}31.9\,\,\text{pA}\)

weight (PSC amplitude) of external inputs

\(d\)

\(1.5\,\,\text{ms}\)

spike transmission delay

\(\tau_\text{s}\)

\(2\,\,\text{ms}\)

synaptic time constant

\(\lambda\color{blue} =\ \lambda^+\)

\(20\)

magnitude of weight update for causal firing

\(\mu^+\)

\(0.4\)

weight dependence exponent for causal firing

\(J_0\)

\(1\,\,\text{pA}\)

reference weight

\(\tau^+\)

\(15\,\,\text{ms}\)

time constant of weight update for causal firing

\(\alpha\)

\(0.1\)

relative magnitude of weight update for acausal firing

\(\color{blue} \lambda^-\)

\(-\alpha\lambda=-2\)

magnitude of weight update for acausal firing

\(\tau^-\)

\(30\,\,\text{ms}\)

time constant of weight update for acausal firing

Stimulus parameters

Name

Value

Description

\(\eta\)

\(1.2\)

relative rate of external Poissonian sources

\(\color{blue} \nu_\theta\)

\(1442 \ \,\text{spikes/s}\)

rheobase rate

\(\color{blue} \nu_{\text{X}}\)

\(\eta\ \nu_\theta\approx{}\ 1730\,\text{spikes/s}\)

rate of external Poissonian sources

Initial conditions parameters

Name

Value

Description

\(\color{blue} V_{0,\text{min}}\)

\(E_\text{L}\ =0\,\,\text{mV}\)

minimum initial membrane potential

\(\color{blue} V_{0,\text{max}}\)

\(\theta\ = 20\,\,\text{mV}\)

maximum initial membrane potential

References