Two population STDP network model¶
Network model¶
In this example, we employ a simple network model describing the dynamics of a local cortical circuit at the spatial scale of
~1mm within a single cortical layer. It is derived from the model proposed in [1],
but accounts for the synaptic weight dynamics for connections between excitatory neurons. The weight dynamics are described
by the spike-timing-dependent plasticity (STDP) model derived in [2].
This network model is used as the basis for scaling experiments comparing the model ignore-and-fire
with the iaf_psc_alpha
.
You can find
Summary of network model¶
Populations |
excitatory population \(\mathcal{E}\), inhibitory population \(\mathcal{I}\), external Poissonian spike sources \(\mathcal{X}\) |
---|---|
Connectivity |
sparse random connectivity respecting Dale’s principle |
Neurons |
leaky integrate-and-fire (LIF) |
Synapses |
linear input integration with alpha-function-shaped postsynaptic currents (PSCs), spike-timing dependent plasticity (STDP) for connections between excitatory neurons |
Input |
stationary, uncorrelated Poissonian spike trains |
Detailed desciption of network model¶
Populations¶
Name |
Elements |
Size |
---|---|---|
\(\mathcal{E}\) |
LIF neurons |
\(N_\text{E}=\beta{}N\) |
\(\mathcal{I}\) |
LIF neurons |
\(N_\text{I}=N-N_\text{E}\) |
\(\mathcal{X}\) |
realizations of a Poisson point process |
\(N\) |
Connectivity¶
Source |
Target |
Pattern |
---|---|---|
\(\mathcal{E}\) |
\(\mathcal{E}\) |
|
\(\mathcal{E}\) |
\(\mathcal{I}\) |
|
\(\mathcal{I}\) |
\(\mathcal \ {E}\cup\mathcal{I}\) |
|
\(\mathcal{X}\) |
\(\mathcal \ {E}\cup\mathcal{I}\) |
|
Neuron¶
Leaky integrate-and-fire (iaf) dynamics |
Dynamics of membrane potential \(V_{i}(t)\) and spiking activity \(s_i(t)\) of neuro \(i\in\left\{1,\ldots,N\right\}\):
|
Synapse: transmission¶
Current-based synapses with alpha-function shaped postsynaptic currents (PSCs) |
Total synaptic input current of neuron \(i\)
\[I_i(t)=I_{\text{E},i}(t)+I_{\text{I},i}(t)+I_{\text{X},i}(t)\]
|
Synapse: plasticity¶
Spike-timing dependent plasticity (STDP) with power-law weight dependence and all-to-all spike pairing scheme. See Morrison et al. [2] for connections between excitatory neurons. |
Dynamics of synaptic weights \(J_{ij}(t)\) \(\forall{}i\in\mathcal{E}, j\in\mathcal{E}\):
Note The above weight update accounts for all pairs of pre- and postsynaptic spikes (all-to-all spike pairing scheme). The spike histories and the dependence of the weight update on the time lag of pre- and postsynaptic firing are fully captured by the spike traces \(x^+_j(t)\) and \(x^-_i(t)\). |
Stimulus¶
Type |
Description |
---|---|
stationary, uncorrelated Poisson spike trains |
\(N=|\mathcal{X}|\) independent realizations \(s_i(t)\) (\(i\in\mathcal{X}\)) of a Poisson point process with constant rate \(\nu_\text{X}(t)=\eta\nu_\theta\), where
\[ \begin{align}\begin{aligned}\label{eq:rheobase_rate_LIF_alpha}\\ \nu_\theta=\frac{\theta-E
_\text{L}}{R_\text{m}{}
\hat{I}_X{}e\tau_\text{s}}\end{aligned}\end{align} \]
denotes the rheobase rate, and \(\eta\) and \(\hat{I}_X=J/J_\text{unit}\) the relative rate and the synaptic weight (PSC amplitude) of external sources |
Initial conditions¶
Type |
Description |
---|---|
random initial membrane potentials, homogeneous initial synaptic weights and spike traces |
|
Model parameters¶
Note
Parameters derived from other parameters are marked in \(\textcolor{blue}{blue}\).
Network and connectivity¶
Name |
Value |
Description |
---|---|---|
\(N\) |
\(12500\) |
total number of neurons in local network |
\(\beta\) |
\(0.8\) |
relative number of excitatory neurons |
\(\color{blue} N_\text{E}\) |
\(\beta{}N=10000\) |
total number of excitatory neurons |
\(\color{blue} N_\text{I}\) |
\(N-N_\text{E}=2500\) |
total number of inhibitory neurons |
\(K\) |
\(1250\) |
total number of inputs per neuron (in-degree) from local network |
\(\color{blue} K_\text{E}\) |
\(\beta{}K=1000\) |
number of excitatory inputs per neuron (exc. in-degree) from local network |
\(\color{blue} K_\text{I}\) |
\(K-K_\text{E}=250\) |
number of inhibitory inputs per neuron (inh. in-degree) |
Neuron parameters¶
Name |
Value |
Description |
---|---|---|
\(\theta\) |
\(20\,\text{mV}\) |
spike threshold |
\(E_\text{L}\) |
\(0\,\text{mV}\) |
resting potential |
\(\tau_\text{m}\) |
\(20\,\text{ms}\) |
membrane time constant |
\(C_\text{m}\) |
\(250\,\text{pF}\) |
membrane capacitance |
\(\color{blue} R_\text{m}\) |
\(\tau \ _\text{m}/C_\text{m}\ =80\,\text{M}\Omega\) |
membrane resistance |
\(V_\text{reset}\) |
\(0\,\text{mV}\) |
reset potential |
\(\tau_\text{ref}\) |
\(2\,\text{ms}\) |
absolute refractory period |
Synapse parameters¶
Name |
Value |
Description |
---|---|---|
\(J\) |
\(0.5\,\,\text{mV}\) |
(initial) weight (PSP amplitude) of excitatory synapses |
\(g\) |
\(10\) |
relative strength of inhibitory synapses |
\(\color{blue} J_\text{I}\) |
\(-g {}J=-5\,\,\text{mV}\) |
weight (PSP amplitude) of inhibitory synapses |
\(\color{blue} J_\text{unit}\) |
\(\approx{}\ 0.01567\,\,\text{mV} \ /\,\text{pA}\) |
unit PSP amplitude |
\(\color{blue} \ \hat{I}_\text{E}(0)\) |
\(J/ \ J_\text{unit}\approx\ {}31.9\,\,\text{pA}\) |
(initial) weight (PSC amplitude) of excitatory synapses |
\(\color{blue} \hat{I}_\text{I}\) |
\(-g{}J/ \ J_\text{unit}\approx\ {}-319\,\,\text{pA}\) |
weight (PSC amplitude) of inhibitory synapses |
\(\color{blue} \hat{I}_\text{X}\) |
\(J/ \ J_\text{unit}\approx\ {}31.9\,\,\text{pA}\) |
weight (PSC amplitude) of external inputs |
\(d\) |
\(1.5\,\,\text{ms}\) |
spike transmission delay |
\(\tau_\text{s}\) |
\(2\,\,\text{ms}\) |
synaptic time constant |
\(\lambda\color{blue} =\ \lambda^+\) |
\(20\) |
magnitude of weight update for causal firing |
\(\mu^+\) |
\(0.4\) |
weight dependence exponent for causal firing |
\(J_0\) |
\(1\,\,\text{pA}\) |
reference weight |
\(\tau^+\) |
\(15\,\,\text{ms}\) |
time constant of weight update for causal firing |
\(\alpha\) |
\(0.1\) |
relative magnitude of weight update for acausal firing |
\(\color{blue} \lambda^-\) |
\(-\alpha\lambda=-2\) |
magnitude of weight update for acausal firing |
\(\tau^-\) |
\(30\,\,\text{ms}\) |
time constant of weight update for acausal firing |
Stimulus parameters¶
Name |
Value |
Description |
---|---|---|
\(\eta\) |
\(1.2\) |
relative rate of external Poissonian sources |
\(\color{blue} \nu_\theta\) |
\(1442 \ \,\text{spikes/s}\) |
rheobase rate |
\(\color{blue} \nu_{\text{X}}\) |
\(\eta\ \nu_\theta\approx{}\ 1730\,\text{spikes/s}\) |
rate of external Poissonian sources |
Initial conditions parameters¶
Name |
Value |
Description |
---|---|---|
\(\color{blue} V_{0,\text{min}}\) |
\(E_\text{L}\ =0\,\,\text{mV}\) |
minimum initial membrane potential |
\(\color{blue} V_{0,\text{max}}\) |
\(\theta\ = 20\,\,\text{mV}\) |
maximum initial membrane potential |