Note
Go to the end to download the full example code.
Generate reference dataΒΆ
Run this example as a Jupyter notebook:
![]()
See our guide for more information and troubleshooting.
import sys
import model
import psutil
def generate_reference_data(neuron_model="ignore_and_fire"):
"""
Generate set of reference data and store on disk (spike data and model paramaters).
Note: Data can be loaded from file using
parameters = model.get_default_parameters()
spikes = model.load_spike_data("./")
"""
parameters = model.get_default_parameters()
parameters["neuron_model"] = neuron_model
parameters["record_spikes"] = True
# parameters["record_weights"] = True
model_instance = model.Model(parameters)
print("\nneuron model: %s" % model_instance.pars["neuron_model"])
model_instance.create()
model_instance.connect()
# connectivity at start of simulation
subset_size = 2000 # number of pre- and post-synaptic neurons weights are extracted from
pop_pre = model_instance.nodes["pop_E"][:subset_size]
pop_post = model_instance.nodes["pop_E"][:subset_size]
C = model_instance.get_connectivity(
pop_pre, pop_post, model_instance.pars["data_path"] + "/" + "connectivity_presim.dat"
)
# simulate
model_instance.simulate(model_instance.pars["T"])
# save parameters to file
model_instance.save_parameters("model_instance_parameters", model_instance.pars["data_path"])
# connectivity at end of simulation
C = model_instance.get_connectivity(
pop_pre, pop_post, model_instance.pars["data_path"] + "/" + "connectivity_postsim.dat"
)
generate_reference_data(neuron_model=sys.argv[1])