Simulation details ================== By default, this implementation is based on the LIF neuron, :doc:`iaf_psc_alpha ` and the :doc:`stdp_pl_synapse_hom ` synapse models provided in NEST. With ``pars['neuron_model']='ignore_and_fire'``, the model is configured into a truly scalable mode where the ``integrate-and-fire`` dynamics are replaced by an ``ignore_and_fire`` dynamics, while the plasticity dynamics remains intact. The network is connected according to the ``fixed_indegree`` :ref:`connection rule ` in NEST. The neuron dynamics is propagated in time using exact integration based on Rotter and Diesmann [1]_ with a simulation step size :math:`\Delta{}t`. The synapse dynamics is updated in an event-based manner as described by Morrison et al. [2]_. .. The model implementation runs with `NEST 3.6 `__ and `NESTML 6.0.0 `__. Simulation parameters --------------------- +-----------------------+---------------------------------+-----------------------------+ | Name | Value | Description | +=======================+=================================+=============================+ | :math:`T` | :math:`1000\,\text{ms}` | total simulation time | +-----------------------+---------------------------------+-----------------------------+ | :math:`\Delta{}t` | :math:`2^{-3}=0.125\,\text{ms}` | duration pof simulation step| +-----------------------+---------------------------------+-----------------------------+ | ``tics_per_step`` | :math:`2^7=128` | number of tics per | | | | simulation step | | | | :math:`\Delta{t}` | | | | (time resolution) | +-----------------------+---------------------------------+-----------------------------+ References ---------- .. [1] Rotter & Diesmann (1999). Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biological Cybernetics 81(5-6):381-402. doi:10.1007/s004220050570 https://doi.org/10.1007/s004220050570 .. [2] Morrison et al. (2007). Spike-timing dependent plasticity in balanced random networks. Neural Computation 19:1437-1467 10.1162/neco.2007.19.6.1437